

ecdysis - personal code and documentation templates

This project is a set of templates and code snippets I reuse by
copy-pasting in other projects. They are generally not worth creating
a full module or project for, since they are often small
one-liners. Or they are too complex and overlap with existing
functionalities. Ideally, those would be merged in the standard
library.

This here is chaos and may make sense only to me.

[image: pipeline status]
 [https://gitlab.com/anarcat/ecdysis/commits/master][image: coverage report]
 [https://gitlab.com/anarcat/ecdysis/commits/master][image: Say thanks to the author]
 [https://saythanks.io/to/anarcat]Contents:

	Usage
	Quick start

	Documentation structure

	Community guidelines

	Why the name?

	Code snippets
	Code documentation

	Indices and tables

	Support
	Troubleshooting

	Chat

	Bug reports

	Commercial support

	Contribution guide
	Positive feedback

	Documentation

	Issues and bug reports

	Patches

	Membership

	Release process

	Code of conduct
	Contributor Covenant Code of Conduct

	Todo
	README improvements

	Changelog and index

	Man pages

	Commit messages

	Funding

	Code

	License

	Contact

Usage

Quick start

Copy the code you need from the ecdysis/ module. Search and replace
the ecdysis string with your own module name. Backport to Python 2
if you need: the code targets Python 3, but should be easily
backportable. Make sure you also check the setup.py,
setup.cfg, tox.ini, .gitignore and similar files from the
top directory to setup tests properly.

Copy the doc/ directory into your project. Review and edit the
Contribution guide guidelines and run make html to generate a HTML
rendering of the documentation. Read the API documentation and copy-paste the code you need. Consider adding a changelog [https://github.com/olivierlacan/keep-a-changelog].

We use the doctest [https://docs.python.org/3/library/doctest.html]
module to perform tests on the various functions because it allows us
to quickly copy the tests along with the functions when we copy code
around. Tests are discovered with pytest [https://pytest.org/].

Documentation structure

Code is not everything. Documentation is really important too. This
base package also features extensive self-documentation, but also
documentation templates that can be reused.

The documentation is made of this README file, but is also
rendered as a ReST (REStructured Text) document that is rendered into
various formats (HTML, ePUB, PDF, etc) through the Sphinx [http://www.sphinx-doc.org]
documentation system. Special includes in the index.rst file do
some magic to distribute parts of this file in the right sections of
the online documentation.

Community guidelines

The community guidelines are described in the Contribution guide
document, which provides a nice template that I reuse in other
projects. It includes:

	a code of conduct

	how to send patches

	how documentation works

	how to report bugs

	how to make a release

It seems critical to me that every project should have such
documentation.

Why the name?

The name comes from what snakes and other animals do to “create a new
snake”: they shed their skin. This is not so appropriate for snakes,
as it’s just a way to rejuvenate their skin, but is especially
relevant for anthropods since the ecdysis may be associated with a
metamorphosis:

Ecdysis is the moulting of the cuticle in many invertebrates of
the clade Ecdysozoa. Since the cuticle of these animals typically
forms a largely inelastic exoskeleton, it is shed during growth
and a new, larger covering is formed. The remnants of the old,
empty exoskeleton are called exuviae.

—Wikipedia [https://en.wikipedia.org/wiki/Ecdysis]

So this project is metamorphosed into others when the documentation
templates, code examples and so on are reused elsewhere. For that
reason, the license is an unusally liberal (for me) MIT/Expat license.

The name also has the nice property of being absolutely
unpronounceable, which makes it unlikely to be copied but easy to
search online.

Code snippets

This is Python code snippets I often reuse between different
software. One day, maybe parts of this could be merged in the standard
library or at least shipped in a reusable library?

Code documentation

This is the automatically generated documentation for the Python code.

ecdysis.argparse

improvements to the standard :module:`argparse` module

	
class ecdysis.argparse.NegateAction(option_strings, *args, **kwargs)

	add a toggle flag to argparse

this is similar to ‘store_true’ or ‘store_false’, but allows
arguments prefixed with –no to disable the default. the default
is set depending on the first argument - if it starts with the
negative form (defined by default as ‘–no’), the default is False,
otherwise True.

originally written for the stressant project.

@deprecated use the BooleanOptionalAction from Python 3.9 instead,
although it doesn’t have the default override we implemented here.

	
negative = '--no'

	

	
class ecdysis.argparse.ConfigAction(*args, **kwargs)

	add configuration file to current defaults.

a list of default config files can be specified and will be
parsed when added by ConfigArgumentParser.

it was reported this might not work well with subparsers, patches
to fix that are welcome.

	
parse_config(path: str [https://docs.python.org/3/library/stdtypes.html#str]) → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	abstract implementation of config file parsing, should be overridden in subclasses

	
class ecdysis.argparse.YamlConfigAction(*args, **kwargs)

	YAML config file parser action

	
parse_config(path: str [https://docs.python.org/3/library/stdtypes.html#str]) → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	This doesn’t handle errors around open() and others, callers should
probably catch FileNotFoundError at least.

	
class ecdysis.argparse.ConfigArgumentParser(*args, **kwargs)

	argument parser which supports parsing extra config files

Config files specified on the commandline through the
YamlConfigAction arguments modify the default values on the
spot. If a default is specified when adding an argument, it also
gets immediately loaded.

This will typically be used in a subclass, like this:

self.add_argument(’–config’, action=YamlConfigAction, default=self.default_config())

This shows how the configuration file overrides the default value
for an option:

>>> from tempfile import NamedTemporaryFile
>>> c = NamedTemporaryFile()
>>> c.write(b"foo: delayed\n")
13
>>> c.flush()
>>> parser = ConfigArgumentParser()
>>> a = parser.add_argument('--foo', default='bar')
>>> a = parser.add_argument('--config', action=YamlConfigAction, default=[c.name])
>>> args = parser.parse_args([])
>>> args.config == [c.name]
True
>>> args.foo
'delayed'
>>> args = parser.parse_args(['--foo', 'quux'])
>>> args.foo
'quux'

This is the same test, but with –config called earlier, which
should still work:

>>> from tempfile import NamedTemporaryFile
>>> c = NamedTemporaryFile()
>>> c.write(b"foo: quux\n")
10
>>> c.flush()
>>> parser = ConfigArgumentParser()
>>> a = parser.add_argument('--config', action=YamlConfigAction, default=[c.name])
>>> a = parser.add_argument('--foo', default='bar')
>>> args = parser.parse_args([])
>>> args.config == [c.name]
True
>>> args.foo
'quux'
>>> args = parser.parse_args(['--foo', 'baz'])
>>> args.foo
'baz'

This tests that you can override the config file defaults altogether:

>>> parser = ConfigArgumentParser()
>>> a = parser.add_argument('--config', action=YamlConfigAction, default=[c.name])
>>> a = parser.add_argument('--foo', default='bar')
>>> args = parser.parse_args(['--config', '/dev/null'])
>>> args.foo
'bar'
>>> args = parser.parse_args(['--config', '/dev/null', '--foo', 'baz'])
>>> args.foo
'baz'

This tests multiple search paths, first one should be loaded:

>>> from tempfile import NamedTemporaryFile
>>> d = NamedTemporaryFile()
>>> d.write(b"foo: argh\n")
10
>>> d.flush()
>>> parser = ConfigArgumentParser()
>>> a = parser.add_argument('--config', action=YamlConfigAction, default=[d.name, c.name])
>>> a = parser.add_argument('--foo', default='bar')
>>> args = parser.parse_args([])
>>> args.foo
'argh'
>>> c.close()
>>> d.close()

There are actually many other implementations of this we might
want to consider instead of maintaining our own:

https://github.com/omni-us/jsonargparse
https://github.com/bw2/ConfigArgParse
https://github.com/omry/omegaconf

See this comment for a quick review:

https://github.com/borgbackup/borg/issues/6551#issuecomment-1094104453

	
parse_args(args: Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][str [https://docs.python.org/3/library/stdtypes.html#str]] | None [https://docs.python.org/3/library/constants.html#None] = None, namespace: Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace] | None [https://docs.python.org/3/library/constants.html#None] = None) → Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace]

	

	
default_config() → Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]

	handy shortcut to detect commonly used config paths

This list is processed as a FIFO: if a file is found in there,
it will be parsed and the remaining ones will be ignored.

	
class ecdysis.argparse.LoggingAction(*args, **kwargs)

	change log level on the fly

The logging system should be initialized before this, using
basicConfig.

Example usage:

logging.basicConfig(level=”WARNING”, format=”%(message)s”)
parser.add_argument(

“-v”,
“–verbose”,
action=LoggingAction,
const=”INFO”,
help=”enable verbose messages”,

)
parser.add_argument(

“-d”,
“–debug”,
action=LoggingAction,
const=”DEBUG”,
help=”enable debugging messages”,

)

Or, if you want to default to “verbose” (AKA “INFO”):

logging.basicConfig(format=”%(message)s”) # INFO is default
parser.add_argument(

“-q”,
“–quiet”,
action=LoggingAction,
const=”WARNING”,
help=”silence messages except warnings and errors”,

)
parser.add_argument(

“-d”,
“–debug”,
action=LoggingAction,
const=”DEBUG”,
help=”enable debugging messages”,

)

ecdysis.cli

various commandline tools

	
class ecdysis.cli.throbber(factor=0, stream=<_io.TextIOWrapper name='<stderr>' mode='w' encoding='utf-8'>, symbol='.', fmt='{}', i=1)

	weird logarithmic “progress bar”

when a throbber object is called, will display progress using the
provided “symbol”

the throbber will print the symbol every time it’s called until it
crosses a logarithmic threshold (the “factor”), at which point the
factor is increased.

this is useful to display progress on large datasets that have an
unknown size (so we can’t guess completion time and we can’t
reasonably guess the progress/display ratio).

originally from the code I wrote for the Euler project

this function requires Python 3.3 at least, because it uses
print(flush=True)

Other progress bars include:

Rich: https://rich.readthedocs.io/en/stable/progress.html
tqdm: https://github.com/tqdm/tqdm
progress: https://pypi.org/project/progress/
progressbar: https://pypi.org/project/progressbar/

	
class ecdysis.cli.Prompter

	Set of prompt utilities.

This is untested. It mostly comes from Monkeysign, but was
rewritten for notmuch-sync-flagged and in doing so, was
significantly refactored without further tests.

This could possibly be replaced with:

https://github.com/prompt-toolkit/python-prompt-toolkit
https://github.com/Mckinsey666/bullet

	
yes_no(prompt, default='y', choices=['y', 'n'])

	This will show the given prompt, check if it matches the given
choices, and return True if it matches the first choice
provided. If some “false” string (e.g. empty string which happens
when you just hit “enter”) is provided, the default value (which
should be a boolean) is returned.

For unit testing, the input function can be overridden with
input_func.

>>> prompter = Prompter()
>>> prompter.input = lambda x: 'y'
>>> prompter.yes_no('foo')
True
>>> prompter.input = lambda x: 'n'
>>> prompter.yes_no('foo')
False
>>> prompter.input = lambda x: ''
>>> prompter.yes_no('foo', default='y')
True
>>> prompter.yes_no('foo', default='n')
False

	
pick(prompt, default, choices)

	

	
acknowledge(prompt=None)

	Just wait for the user to hit enter and return.

	
input(prompt)

	Wrapper around python’s input function, to ease testing.

	
input_pass(prompt)

	Input without showing the typed characters on the terminal.

ecdysis.logging

	similarly, bup-cron has this GlobalLogger and a Singleton concept
that may be useful elsewhere? it certainly does a nice job at
setting up all sorts of handlers and stuff. stressant also has a
setup_logging function that also supports colors and SMTP
mailers. debmans has a neat log_warnings hook as well.

	monkeysign also has facilities to (ab)use the logging handlers to
send stuff to the GTK framework (GTKLoggingHandler) and a error
handler in GTK (in msg_exception.py)

	
ecdysis.logging.logging_args(parser)

	>>> from pprint import pprint
>>> parser = argparse.ArgumentParser()
>>> logging_args(parser)
>>> pprint(sorted(parser.parse_args(['--verbose']).__dict__.items()))
[('email', None),
 ('logfile', None),
 ('loglevel', 'INFO'),
 ('smtppass', None),
 ('smtpserver', None),
 ('smtpuser', None),
 ('syslog', None)]
>>> pprint(sorted(parser.parse_args(['--verbose', '--debug']).__dict__.items()))
[('email', None),
 ('logfile', None),
 ('loglevel', 'DEBUG'),
 ('smtppass', None),
 ('smtpserver', None),
 ('smtpuser', None),
 ('syslog', None)]
>>> pprint(sorted(parser.parse_args(['--verbose', '--syslog']).__dict__.items()))
[('email', None),
 ('logfile', None),
 ('loglevel', 'INFO'),
 ('smtppass', None),
 ('smtpserver', None),
 ('smtpuser', None),
 ('syslog', 'INFO')]

	
ecdysis.logging.advancedConfig(level='warning', stream=None, syslog=False, prog=None, email=False, smtpparams=None, logfile=None, logFormat='%(levelname)s: %(message)s', **kwargs)

	setup standard Python logging facilities

this was taken from the debmans and stressant loggers, although it
lacks stressant’s color support

	Parameters:

	
	level (str [https://docs.python.org/3/library/stdtypes.html#str]) – logging level, usually one of levels

	stream (file) – stream to send logging events to, or None to

use the logging default (usually stderr)

	Parameters:

	syslog (str [https://docs.python.org/3/library/stdtypes.html#str]) – send log events to syslog at the specified

level. defaults to False, which doesn’t send syslog events

	Parameters:

	prog (str [https://docs.python.org/3/library/stdtypes.html#str]) – the program name to use in syslog lines, defaults

to .__prog__

	Parameters:

	email (str [https://docs.python.org/3/library/stdtypes.html#str]) – send logs by email to the given email address

using the BufferedSMTPHandler

	Parameters:

	smtpparams (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – parameters to use when sending

email. expected fields are:

	fromaddr (defaults to $USER@$FQDN)

	subject (defaults to ‘’)

	mailhost (defaults to the last part of the destination email)

	user (to authenticate against the SMTP server, defaults to no auth)

	pass (password to use, prompted using getpass otherwise)

	Parameters:

	logfile (str [https://docs.python.org/3/library/stdtypes.html#str]) – filename to pass to the FileHandler to log

directly to a file

	Parameters:

	logFormat (str [https://docs.python.org/3/library/stdtypes.html#str]) – logformat to use for the FileHandler and

BufferedSMTPHandler

	
class ecdysis.logging.BufferedSMTPHandler(mailhost, fromaddr, toaddrs, subject, credentials=None, secure=None, capacity=5000, flushLevel=40, retries=1)

	A handler class which sends records only when the buffer reaches
capacity. The object is constructed with the arguments from
SMTPHandler and MemoryHandler and basically behaves as a merge
between the two classes.

The SMTPHandler.emit() implementation was copy-pasted here because
it is not flexible enough to be overridden. We could possibly
override the format() function to instead look at the internal
buffer, but that would have possibly undesirable side-effects.

	
emit(record)

	buffer the record in the MemoryHandler

	
flush()

	Flush all records.

Format the records and send it to the specified addressees.

The only change from SMTPHandler here is the way the email
body is created.

ecdysis.os

various overrides to the builtin os library

	
ecdysis.os.make_dirs_helper(path)

	Create the directory if it does not exist

Return True if the directory was created, false if it was already
present, throw an OSError exception if it cannot be created

>>> import tempfile
>>> import os
>>> import os.path as p
>>> d = tempfile.mkdtemp()
>>> make_dirs_helper(p.join(d, 'foo'))
True
>>> make_dirs_helper(p.join(d, 'foo'))
False
>>> make_dirs_helper(p.join('/dev/null', 'foo'))
Traceback (most recent call last):
 ...
NotADirectoryError: [Errno 20] Not a directory: ...
>>> os.rmdir(p.join(d, 'foo'))
>>> os.rmdir(d)
>>>

ecdysis.packaging

	
ecdysis.packaging.find_parent_module()

	find the name of a the first module calling this module

if we cannot find it, we return the current module’s name
(__name__) instead.

	
ecdysis.packaging.find_static_file(path, module=None)

	locate a file in the distribution

this will look in the shipped files in the package

this assumes the files are at the root of the package or the
source tree (if not packaged)

this does not check if the file actually exists.

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – path for the file, relative to the source tree root

	module (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the module to find the find in. if
None, guessed with find_parent_module()

	Returns:

	the absolute path to the file

ecdysis.strings

ecdysis.time

Indices and tables

	Index

	Module Index

	Search Page

Support

If you have problems or question with this project, there are several
options at your disposal:

	Try to troubleshoot the issue yourself

	Chat on IRC

	File bug reports

We of course welcome other contributions like documentation,
translations and patches, see the Contribution guide guide for more
information on how to contribute to the project.

Troubleshooting

The basic way to troubleshoot this program is to run the same command as
you did when you had an error with the --verbose or, if that
doesn’t yield satisfactory results, with the --debug output.

Note

The debug output outputs a lot of information and may be
confusing for new users.

If you suspect there is a bug specific to your environment, you can
also try to see if it is reproducible within the
testsuite. From there, you can either file a bug report or try
to fix the issue yourself, see the Contribution guide section for
more information.

Otherwise, see below for more options to get support.

Chat

We are often present in realtime in the #anarcat channel of the
Freenode network [https://freenode.net/]. You can join the channel using a normal IRC client or using this web interface [https://webchat.freenode.net/?nick=ecdysis.&channels=ecdysis&prompt=1].

 Contribution guide

Contribution guide

This document outlines how to contribute to this project. It details
instructions on how to submit issues, bug reports and patches.

Before you participate in the community, you should agree to respect
the Code of conduct.

Note

Before you reuse this document in your own project, you will need
to at least read the whole thing and make a few
changes. Concretely, you will at least need to do the following
changes:

	change the references at the top of the file to point to
your project

	change the release process to follow your workflow (or
remove it if releases are against your religion, which
would be sad)

	also consider using a tool like DCO [https://developercertificate.org/] to assign copyright
ownership

	obviously, remove or comment out this note when done

Positive feedback

Even if you have no changes, suggestions, documentation or bug reports
to submit, even just positive feedback like “it works” goes a long
way. It shows the project is being used and gives instant
gratification to contributors. So we welcome emails that tell us of
your positive experiences with the project or just thank you
notes. Head out to contact for contact informations or submit
a closed issue with your story.

You can also send your “thanks” through saythanks.io [https://saythanks.io/to/anarcat].

[image: Say thanks to the author]
 [https://saythanks.io/to/anarcat]

Documentation

We love documentation!

The documentation resides in various Sphinx [http://www.sphinx-doc.org/] documentations and in the README
file. Those can can be edited online [https://gitlab.com/anarcat/ecdysis/edit/master/README.rst] once you register and changes
are welcome through the normal patch and merge request system.

Issues found in the documentation are also welcome, see below to file
issues in our tracker.

Issues and bug reports

We want you to report issues you find in the software. It is a
recognized and important part of contributing to this project. All
issues will be read and replied to politely and
professionnally. Issues and bug reports should be filed on the issue
tracker [https://gitlab.com/anarcat/ecdysis/issues].

Issue triage

Issue triage is a useful contribution as well. You can review the
issues [https://gitlab.com/anarcat/ecdysis/issues] in the project page [https://gitlab.com/anarcat/ecdysis/] and, for each issue:

	try to reproduce the issue, if it is not reproducible, label it with
more-info and explain the steps taken to reproduce

	if information is missing, label it with more-info and request
specific information

	if the feature request is not within the scope of the project or
should be refused for other reasons, use the wontfix label and
close the issue

	mark feature requests with the enhancement label, bugs with
bug, duplicates with duplicate and so on…

Note that some of those operations are available only to project
maintainers, see below for the different statuses.

Security issues

Security issues should first be disclosed privately to the project
maintainers (see Contact), which support receiving encrypted
emails through the usual OpenPGP key discovery mechanisms.

This project cannot currently afford bounties for security issues. We
would still ask that you coordinate disclosure, giving the project a
reasonable delay to produce a fix and prepare a release before public
disclosure.

Public recognition will be given to reporters security issues if
desired. We otherwise agree with the Disclosure Guidelines [https://www.hackerone.com/disclosure-guidelines] of the
HackerOne project [https://www.hackerone.com/], at the time of writing.

Patches

Patches can be submitted through merge requests [https://gitlab.com/anarcat/ecdysis/merge_requests] on the project
page [https://gitlab.com/anarcat/ecdysis/].

Some guidelines for patches:

	A patch should be a minimal and accurate answer to exactly one
identified and agreed problem.

	A patch must compile cleanly and pass project self-tests on all
target platforms.

	A patch commit message must consist of a single short (less than 50
characters) line stating a summary of the change, followed by a blank
line and then a description of the problem being solved and its
solution, or a reason for the change. Write more information, not
less, in the commit log.

	Patches should be reviewed by at least one maintainer before being
merged.

Project maintainers should merge their own patches only when they have
been approved by other maintainers, unless there is no response within a
reasonable timeframe (roughly one week) or there is an urgent change to
be done (e.g. security or data loss issue).

As an exception to this rule, this specific document cannot be changed
without the consensus of all administrators of the project.

Note: Those guidelines were inspired by the Collective Code
Construct Contract [https://rfc.zeromq.org/spec:42/C4/]. The document was found to be a little too
complex and hard to read and wasn’t adopted in its entirety. See
this discussion [https://github.com/zeromq/rfc/issues?utf8=%E2%9C%93&q=author%3Aanarcat%20]
for more information.

Patch triage

You can also review existing pull requests, by cloning the contributor’s
repository and testing it. If the tests do not pass (either locally or
in the online Continuous Integration (CI) system), if the patch is
incomplete or otherwise does not respect the above guidelines, submit a
review with “changes requested” with reasoning.

Membership

There are three levels of membership in the project, Administrator (also
known as “Owner” in GitHub or GitLab), Maintainer (also known as
“Member” on GitHub or “Developer” on GitLab), or regular users (everyone
with or without an account). Anyone is welcome to contribute to the
project within the guidelines outlined in this document, regardless of
their status, and that includes regular users.

Maintainers can:

	do everything regular users can

	review, push and merge pull requests

	edit and close issues

Administrators can:

	do everything maintainers can

	add new maintainers

	promote maintainers to administrators

Regular users can be promoted to maintainers if they contribute to the
project, either by participating in issues, documentation or pull
requests.

Maintainers can be promoted to administrators when they have given
significant contributions for a sustained timeframe, by consensus of the
current administrators. This process should be open and decided as any
other issue.

Release process

Note

This is just an example. There is no official release
process for the ecdysis project right now, as the module is
not publicly released or versioned.

To make a release:

	generate release notes with:

gbp dch

the file header will need to be moved back up to the beginning of
the file. also make sure to add a summary and choose a proper
version according to Semantic Versioning [http://semver.org/]

	tag the release according to Semantic Versioning [http://semver.org/] rules:

git tag -s x.y.z

	build and test the Python package:

python setup.py bdist_wheel &&
python3 -m venv ~/.venvs/ecdsysis --system-site-packages &&
~/.venvs/ecdsysis/bin/pip3 install $(ls -1tr dist/*.whl | tail -1) &&
~/.venvs/ecdsysis/bin/ecdsysis --version &&
rm -rf ~/.venvs/feed2exec

	build and test the debian package:

git-buildpackage &&
sudo dpkg -i $(ls -tr1 ../build-area/ecdysis_*.deb | tail -1) &&
ecdysis --version &&
sudo dpkg --purge ecdysis

	push changes:

git push
git push --tags
twine upload dist/*
dput ../ecdysis*.changes

	edit the tag [https://gitlab.com/anarcat/ecdysis/tags], copy-paste the changelog entry and attach the
signed binaries

 Code of conduct

Code of conduct

Note

Before you reuse this document in your own project, you will need
to at least read the whole thing and make a few changes. Read more
about community guidelines, code of conducts and
intersectionality [https://en.wikipedia.org/wiki/Intersectionality] (also on geek feminism wiki [http://geekfeminism.wikia.com/wiki/Intersectionality]) before
adopting this: it is not just a rubber stamp, a badge to add to
your project, but a real commitment with complex ethical
ramification. Concretely, you will at least need to make sure there
is a Contact section that details who can handle complaints
and remove or comment out this note.

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our
project and our community a harassment-free experience for everyone,
regardless of age, body size, disability, ethnicity, gender identity and
expression, level of experience, nationality, personal appearance, race,
religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual
attention or advances

	Trolling, insulting/derogatory comments, and personal or political
attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or
electronic address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of
acceptable behavior and are expected to take appropriate and fair
corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit,
or reject comments, commits, code, wiki edits, issues, and other
contributions that are not aligned to this Code of Conduct, or to ban
temporarily or permanently any contributor for other behaviors that they
deem inappropriate, threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public
spaces when an individual is representing the project or its community.
Examples of representing a project or community include using an
official project e-mail address, posting via an official social media
account, or acting as an appointed representative at an online or
offline event. Representation of a project may be further defined and
clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may
be reported by contacting one of the persons listed in Contact. All
complaints will be reviewed and investigated and will result in a
response that is deemed necessary and appropriate to the circumstances.
The project maintainers is obligated to maintain confidentiality with
regard to the reporter of an incident. Further details of specific
enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in
good faith may face temporary or permanent repercussions as determined
by other members of the project’s leadership.

Project maintainers are encouraged to follow the spirit of the Django
Code of Conduct Enforcement Manual [https://www.djangoproject.com/conduct/enforcement-manual/] when receiving reports.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [http://contributor-covenant.org],
version 1.4, available at http://contributor-covenant.org/version/1/4.

Changes

The Code of Conduct was modified to refer to project maintainers
instead of project team and small paragraph was added to refer to the
Django enforcement manual.

Note: We have so far determined that writing an explicit enforcement
policy is not necessary, considering the available literature
already available online and the relatively small size of the
community. This may change in the future if the community grows
larger.

 Todo

Todo

README improvements

For now, I have only included here the Contribution guide document, but
more should be added. There are a lot of templates around for
README files which we could inspire from:

	the art of README [https://github.com/noffle/art-of-readme] -
has a nice checklist, from the common-readme [https://github.com/noffle/common-readme] node.js module guy

	NPM has another standard readme spec [https://www.npmjs.com/package/standard-readme-spec]

	Perl has standards [http://perldoc.perl.org/perlmodstyle.html#DOCUMENTING-YOUR-MODULE],
which are basically derived from manpages

	manpages, themselves, have a standard set of headings, well
described in the mdoc(7) manpage [https://manpages.debian.org/mdoc]

	Drupal has its own set of guidelines for README files [https://www.drupal.org/docs/develop/documenting-your-project/readme-template]

	yet another “kickass” README template [https://dev.to/scottydocs/how-to-write-a-kickass-readme-5af9]

	Ben Ford has an article named Writing a great README [https://binford2k.com/2020/04/21/great-readme/] which recommends
the 5/30/90 rule: 5 seconds to decide if the README is worth a
read, 30 seconds for the main pitch, 90 seconds for architecture,
performance and more in-depth questions, then “the rest” (links to
the rest of the docs, how to install, etc)

	finally, this list wouldn’t be complete without a good discussion
on stackoverflow [https://stackoverflow.com/questions/2304863/how-to-write-a-good-readme]

I did a quick review of the Art of README checklist, and we’re not too
bad for a template. Ironically, I should review my own writing in the
bug reporting blog post [https://anarc.at/blog/2016-10-14-bug-reporting/].

I wonder if I should adopt the Semantic Line Breaks standard [https://sembr.org/].

Changelog and index

The index.rst file should link to a template design document as
well, along with an example of how to build a manpage. A changelog may
be a good addition as well.

Man pages

There’s also this whole thing about syncing the inline --help with
documentation and the manpage. There’s help2man [https://www.gnu.org/software/help2man/] that can be useful for
simpler programs, and I have used it to bootstrap the manpage for
undertime (I think). Otherwise, there’s a whole slew of half-broken
stuff to turn argparse [https://docs.python.org/3/library/argparse.html#module-argparse] output directly into a manpage in the
build system. This is how Monkeysign works. Finally, what I actually
prefer (and I do in stressant) is to write the manpage by hand, in
RST, and convert it to a manpage at build time.

See also my other projects (e.g. monkeysign [https://monkeysphere.info/monkeysign], linkchecker [https://github.com/linkcheck/linkchecker],
wallabako [https://gitlab.com/anarcat/wallabako/], stressant [https://gitlab.com/anarcat/stressant], debmans [http://debmans.readthedocs.io/]) for more examples of the
documentation layout.

Commit messages

The contribution guidelines could benefit from improvements regarding
commit messages. People often write fairly bad commit messages in
patches and commits on projects I participate in. It’s also the case
with bug reports, but we have fairly good instructions in the
Support template here. Patches are specifically painful as
there are no templates that can force users to do the right
thing. There are some notes in the Contribution guide document, but
they could be expanded. Some documents I need to review:

	How to Write a Git Commit Message [https://chris.beams.io/posts/git-commit/] - establishes “seven
rules”:

	Separate subject from body with a blank line

	Limit the subject line to 50 characters

	Capitalize the subject line

	Do not end the subject line with a period

	Use the imperative mood in the subject line

	Wrap the body at 72 characters

	Use the body to explain what and why vs. how

	Linux kernel’s SubmittingPatches documentation [https://github.com/torvalds/linux/blob/master/Documentation/process/submitting-patches.rst#2-describe-your-changes]:

	one patch should fix only one thing

	describe the problem

	describe the impact

	quantify optimizations and tradeoffs (benchmarks!)

	describe what is being done

	use the imperative form (e.g. “make foo” instead of “this makes foo”)

	refer to bug reports, URL, emails if relevant

	refer to a commit hash if the commit fixes a regression

	if you refer to a commit, mention the SHA-1 and the short
description

	ProGit commit guidelines [https://www.git-scm.com/book/en/v2/Distributed-Git-Contributing-to-a-Project#_commit_guidelines] -
formatting tips and some of the above

	Romulo Oliveira’s guide [https://github.com/RomuloOliveira/commit-messages-guide] is also
interesting

	A great commit message [https://fatbusinessman.com/2019/my-favourite-git-commit] and
many more in this Hacker News discussion [https://news.ycombinator.com/item?id=21289827]

	Conventional commits [https://conventionalcommits.org/] - a
stricter approach?

	Patterns for writing better git commit messages [https://dev.to/helderburato/patterns-for-writing-better-git-commit-messages-4ba0] -
has good directives too

	`Git Best Practices – How to Write Meaningful Commits, Effective
Pull Requests, and Code Reviews
https://www.freecodecamp.org/news/git-best-practices-commits-and-code-reviews/>`_ -
“imperative”, “brief”, “helpful”, examples of bad commits, small,
meaningful commits

Funding

Another thing I’m looking at is donations for financing software
projects. I don’t like donations too much because that is
charity-based, which skews social dynamics away from the republic and
towards capital, but that’s another political discussion that cannot
be resolved in the short term. We still need to find ways of feeding
developers and the options are rare. Here are a few reviews worth
mentioning:

	review of funding approaches from Tyil [https://tyil.nl/articles/funding-yourself-as-free-software-developer.html]

	GitHub’s Open Source funding guide [https://opensource.guide/getting-paid/]

	Snowdrift has an excellent market research [https://wiki.snowdrift.coop/market-research] about all this,
including payment gateways and crowdfunding platforms

	Other ideas from a random GitHub project [https://github.com/nayafia/lemonade-stand]

	License zero [https://writing.kemitchell.com/2017/09/12/The-License-Zero-Manifesto.html]

	Liberal Software [https://lwn.net/Articles/712376/] and
Percival’s paid support [http://www.daemonology.net/blog/2017-05-11-plan-for-foss-maintainers.html]

	GNOME apps funding [https://www.joaquimrocha.com/2017/09/05/paying-for-foss-apps/]

Whether any of this will be implemented in my projects remains an open
question, for which I am still looking for feedback [https://anarc.at/blog/2017-03-30-free-software-activities-march-2017/#looking-into-self-financing]. One
of the concerns is that launching a funding campaign that eventually
fails could have a net negative reputation and psychological
impacts. Furthermore, we may want to avoid supporting certain
platforms that ban political speech [https://www.dailydot.com/layer8/patreon-antifa-altright-igd-lauren-southern/]… This
is a minefield.

Code

I still don’t know what to do with that code. Let loose, this could
become like Stackoverflow: a huge dump of random code. Ideally, the
following steps should be taken:

	100% documentation coverage

	100% test coverage

	parts or everything published as (a?) module(s?)

	parts or everything merged in the standard library

	type-checking (mypy [https://mypy.readthedocs.io/], pyright [https://github.com/Microsoft/pyright], feed2exec [https://feed2exec.readthedocs.io/] uses the former)

Stuff like the logging handlers, in particular, should especially be
considered for merging. On the other hand, I also like the idea of
simply copy-pasting small bits of code as needed. There is already a
slugify [https://github.com/un33k/python-slugify] module - yet my
ecdysis.slug() function is still useful because it’s much
simpler and it’s a one-liner that can be copy-pasted in your code
without adding another dependency…

Note that code is nevertheless split up in modules that match the
upstream module names where they could possibly end up, when relevant.

There are other code snippets that are not included here yet, because
I’m not sure they’re good enough or that I would actually reuse them:

	for pid files, I wrote my own PidFile class in bup-cron, but should
look at lockfile

	to run commands, stressant has this useful collectCmd function to
collect output of running commands. bup-cron also has shit like
that.

	for setup.py, monkeysign has things to generate manpages (I
used Sphinx instead in stressant), automatically call sphinx from
the build chain, and translation stuff. debmans also has a neat
__main__ hook. openstack’s pbr project may be relevant here as
well.

	monkeysign also has a UI abstraction layer that well… works more
or less well, but at least works.

	gameclock also has some neat ideas that may be reused

Finally, it looks like Python is moving away from setup.py to
build packages. Some tools have started using pyproject.toml [https://snarky.ca/what-the-heck-is-pyproject-toml/] instead, like
flit [https://flit.readthedocs.io/en/latest/] and poetry [https://python-poetry.org/]. Unfortunately, neither supports
reading the version number from git: flit reads it from the package’s
__version__ variable (flit bug 257 [https://github.com/takluyver/flit/issues/257]) and poetry hardcodes
it in the pyproject.toml file, neither of which seem like the
right solution as it duplicates information from the source of truth:
git. So I’m still using setuptools, but I should probably consider
moving the metadata to setup.cfg [https://setuptools.readthedocs.io/en/latest/setuptools.html#configuring-setup-using-setup-cfg-files]
for the static ones (like trove classifiers) that do not need to be
present at runtime.

 License

License

Unless otherwise noted, the content here is distributed under an
Expat license [https://directory.fsf.org/wiki/License:Expat] since
code snippets are small and we want to encourage code
reuse.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
“Software”), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 Contact

Contact

This program was written by Antoine Beaupré [https://anarc.at/]. Please do not send
email to maintainers privately unless you are looking for paid
consulting or support. See Contribution guide for more information
about how to collaborate on this project.

As a special exception, security issues can be reported privately
using this contact information [https://anarc.at/contact/], where
OpenPGP key material is also available.

The following people have volunteered to be available to respond to Code
of Conduct reports. They have reviewed existing literature and agree to
follow the aforementioned process in good faith. They also accept
OpenPGP-encrypted email:

	Antoine Beaupré [https://anarc.at/]

Todo

https://github.com/kentcdodds/all-contributors?

 Python Module Index

 Python Module Index

 e

 		 	

 		
 e	

 	[image: -]
 	
 ecdysis	

 	
 	
 ecdysis.argparse	

 	
 	
 ecdysis.cli	

 	
 	
 ecdysis.logging	

 	
 	
 ecdysis.os	

 	
 	
 ecdysis.packaging	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | I
 | L
 | M
 | N
 | P
 | T
 | Y

A

 	
 	acknowledge() (ecdysis.cli.Prompter method)

 	
 	advancedConfig() (in module ecdysis.logging)

B

 	
 	BufferedSMTPHandler (class in ecdysis.logging)

C

 	
 	ConfigAction (class in ecdysis.argparse)

 	
 	ConfigArgumentParser (class in ecdysis.argparse)

D

 	
 	default_config() (ecdysis.argparse.ConfigArgumentParser method)

E

 	
 	
 ecdysis.argparse

 	module

 	
 ecdysis.cli

 	module

 	
 ecdysis.logging

 	module

 	
 	
 ecdysis.os

 	module

 	
 ecdysis.packaging

 	module

 	emit() (ecdysis.logging.BufferedSMTPHandler method)

F

 	
 	find_parent_module() (in module ecdysis.packaging)

 	
 	find_static_file() (in module ecdysis.packaging)

 	flush() (ecdysis.logging.BufferedSMTPHandler method)

I

 	
 	input() (ecdysis.cli.Prompter method)

 	
 	input_pass() (ecdysis.cli.Prompter method)

L

 	
 	logging_args() (in module ecdysis.logging)

 	
 	LoggingAction (class in ecdysis.argparse)

M

 	
 	make_dirs_helper() (in module ecdysis.os)

 	
 module

 	ecdysis.argparse

 	ecdysis.cli

 	ecdysis.logging

 	ecdysis.os

 	ecdysis.packaging

N

 	
 	NegateAction (class in ecdysis.argparse)

 	
 	negative (ecdysis.argparse.NegateAction attribute)

P

 	
 	parse_args() (ecdysis.argparse.ConfigArgumentParser method)

 	parse_config() (ecdysis.argparse.ConfigAction method)

 	(ecdysis.argparse.YamlConfigAction method)

 	
 	pick() (ecdysis.cli.Prompter method)

 	Prompter (class in ecdysis.cli)

T

 	
 	throbber (class in ecdysis.cli)

Y

 	
 	YamlConfigAction (class in ecdysis.argparse)

 	
 	yes_no() (ecdysis.cli.Prompter method)

 How to reproduce

 Describe the general problem you have found here.

How to reproduce

	step 1

	step 2

	…

Expected behavior

Actual behavior

Environment

Please fill in the following information in bug reports, removing the
comments like this one in brackets. For feature request, just remove
this section.

	Version: e.g. 0.10, output of --version (without backslashes)

	Operating system: Debian GNU/Linux 9.1 (stretch), Windows 7, Ubuntu Xenial, etc

	Install method: distribution package, PyPI, from source tarball, from git, etc

	URL: e.g. https://example.com/feed.rss

	etc…

nav.xhtml

 Table of Contents

 		
 ecdysis - personal code and documentation templates

 		
 Usage

 		
 Quick start

 		
 Documentation structure

 		
 Community guidelines

 		
 Why the name?

 		
 Code snippets

 		
 Code documentation

 		
 ecdysis.argparse

 		
 ecdysis.cli

 		
 ecdysis.logging

 		
 ecdysis.os

 		
 ecdysis.packaging

 		
 ecdysis.strings

 		
 ecdysis.time

 		
 Indices and tables

 		
 Support

 		
 Troubleshooting

 		
 Chat

 		
 Bug reports

 		
 Commercial support

 		
 Contribution guide

 		
 Positive feedback

 		
 Documentation

 		
 Issues and bug reports

 		
 Issue triage

 		
 Security issues

 		
 Patches

 		
 Patch triage

 		
 Membership

 		
 Release process

 		
 Code of conduct

 		
 Contributor Covenant Code of Conduct

 		
 Our Pledge

 		
 Our Standards

 		
 Our Responsibilities

 		
 Scope

 		
 Enforcement

 		
 Attribution

 		
 Changes

 		
 Todo

 		
 README improvements

 		
